Seat No. _____

Enrollment No._____

C. U. SHAH UNIVERSITY

M.Sc. (Mathematics) Semester-II Summer - 2015 Regular Examination

Subject Name: Number TheorySubject Code: 5SC02MTE3Time: 03 hoursMaximum Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumption whenever necessary.
- 3. Figures to the right indicate full marks.

Section -I

Q-1	a) Define: Prime number. If p is prime and $p ab$, then prove that $p a$ or $p b$.	(02)		
	b) If $a bc$ and $(a, b) = 1$, then prove that $a c$.	(02)		
	c) Findgcd(306,657).	(02)		
	d) Prove that square of any odd number is of the form $8k + 1$, k is integer.	(01)		
Q-2	a) Define: Greatest common divisor. If $(a, b) = d$, then prove that there exists x and y such that $ax + by = d$.	(05)		
	b) Define: Mobious function. Prove that Mobious function is multiplicative function.	(05)		
	c) Prove that $\tau(n)$ is an odd integer if and only if <i>n</i> is a perfect square. OR	(04)		
Q-2	a) State and prove fundamental theorem of divisibility.	(05)		
	b) Define: Multiplicative function. If <i>f</i> is a multiplicative function and <i>F</i> is defined by $F(n) = \sum_{d n} f(d)$, then prove that <i>F</i> is also multiplicative.	(05)		
	c) If p_n is the n^{th} prime numbers, then prove that $p_n \le 2^{2^{n-1}}$, $\forall n$.	(04)		
Q-3	a) State and prove relation between LCM and GCD of two number.	(05)		
	b) Solve the system of three congruences	(05)		
	$x \equiv 1 \pmod{4}, x \equiv 3 \pmod{5}, x \equiv 2 \pmod{7}$			
	c) If p_n is the n^{th} prime numbers, then prove that $p_n \le 2^{2^{n-1}}$, $\forall n$.	(04)		
	OR			
Q-3	a) State and prove Chinese Remainder theorem.	(05)		
	b) Prove that if <i>p</i> is a prime and	(05)		
	$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 a_n \not\equiv 0 \pmod{p}$			
	is a polynomial of degree $n \ge 1$ with integral coefficients, then the congruence			
	$f(x) \equiv 0 \pmod{p}$ has at most <i>n</i> incongruent solution modulo <i>p</i> .	(0 , 1)		
	c) Prove that the function τ and σ are both multiplicative functions.	(04)		
Section – II				
Q-4	a) Determine the infinite continued fraction representation of $\sqrt{5}$.	(02)		
	b) If the integer <i>a</i> has order <i>k</i> modulo <i>n</i> , then prove that $a^i \equiv a^j \pmod{n}$ if and only if $i \equiv j \pmod{n}$.	(02)		

		Define: Euler phi-function. Also find $\phi(9)$.	(02)
	d)	The value of any infinite continue fraction is an irrational number. Determine whether the statement is true or false.	(01)
Q-5	a)	Let $N = a_0 + a_1 10 + a_2 10^2 + \dots + a_m 10^m$ be the decimal expansion of the positive integer $N, 0 \le a_k < 10$, and let $S = a_0 + a_1 + \dots + a_m$. Then prove that $9 N$ if and only if $9 S$. Is 1571724 divisible by 9? Justify.	(05)
	b)	Prove that the product of two primitive polynomial is primitive.	(05)
	c)	Find all integer solutions of the equation $56x + 72y = 40$. OR	(04)
Q-5	a)	Define: Infinite continued fractions. Find the unique irrational number represented by the infinite continued fraction $[1; 2, \overline{3, 1}]$.	(05)
	b)	If $\frac{p_k}{q_k}$ are the convergents of the continued fraction expansion of \sqrt{d} then,	(05)
	,	prove that $p_k^2 - dq_k^2 = (-1)^{k+1} t_{k+1}$, where $t_{k+1} > 0, k = 0, 1, 2, 3,$	
	c)	Prove that for any integer $n > 1$, $\phi(n) = n - 1$ if and only if <i>n</i> is prime.	(04)
Q-6	a)	Prove that all the solutions of $x^2 + y^2 = z^2$ with $x, y, z > 0$; satisfying the conditions $(x, y, z) = 1$, $2 x$ are given by the formula $x = 2st, y = s^2 - t^2, z = s^2 + t^2$, where $s > t > 0$, $(s, t) = 1$ and one of s, t is even and the other is odd.	(05)
	b)	Prove that the product of two primitive polynomial is primitive.	(05)
	c)	Compute the convergents of the simple continued fraction [1; 2,3,3,2,1].	(04)
0.6	,	OR	
Q-6	a)	If $2^k - 1$ is prime $(k > 1)$, then prove that $n = 2^{k-1}(2^k - 1)$ is perfect and every even perfect number is of the form.	(05)
	b)	Prove that any rational number can be written as a finite simple continued fraction.	(05)
	c)	Prove that if an irreducible polynomial $p(x)$ divides a product $f(x)q(x)$, then	(04)

c) Prove that if an irreducible polynomial p(x) divides a product f(x)g(x), then (04) p(x) divides at least one of the polynomials f(x) and g(x).

-----X-----X------