C. U. SHAH UNIVERSITY

M.Sc. (Mathematics) Semester-II Summer - 2015 Regular Examination

Subject Name: Number Theory Time: 03 hours

Subject Code: 5SC02MTE3
Maximum Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumption whenever necessary.
3. Figures to the right indicate full marks.

Section - I

Q-1 a) Define: Prime number. If p is prime and $p \mid a b$, then prove that $p \mid a$ or $p \mid b$.
b) If $a \mid b c \operatorname{and}(a, b)=1$, then prove that $a \mid c$.
c) Findgcd $(306,657)$.
d) Prove that square of any odd number is of the form $8 k+1, k$ is integer.

Q-2 a) Define: Greatest common divisor. $\operatorname{If}(a, b)=d$, then prove that there exists x and y such that $a x+b y=d$.
b) Define: Mobious function. Prove that Mobious function is multiplicative function.
c) Prove that $\tau(n)$ is an odd integer if and only if n is a perfect square.

OR
Q-2 a) State and prove fundamental theorem of divisibility.
b) Define: Multiplicative function. If f is a multiplicative function and F is defined $\operatorname{by} F(n)=\sum_{d \mid n} f(d)$, then prove that F is also multiplicative.
c) If p_{n} is the $n^{\text {th }}$ prime numbers, then prove that $p_{n} \leq 2^{2^{n-1}}, \forall n$.

Q-3 a) State and prove relation between LCM and GCD of two number.
b) Solve the system of three congruences

$$
\begin{equation*}
x \equiv 1(\bmod 4), x \equiv 3(\bmod 5), x \equiv 2(\bmod 7) \tag{05}
\end{equation*}
$$

c) If p_{n} is the $n^{\text {th }}$ prime numbers, then prove that $p_{n} \leq 2^{2^{n-1}}, \forall n$.

OR

Q-3 a) State and prove Chinese Remainder theorem.
b) Prove that if p is a prime and

$$
\begin{equation*}
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} a_{n} \not \equiv 0(\bmod p) \tag{05}
\end{equation*}
$$

is a polynomial of degree $n \geq 1$ with integral coefficients, then the congruence $f(x) \equiv 0(\bmod p)$ has at most n incongruent solution modulo p.
c) Prove that the function τ and σ are both multiplicative functions.

Section - II
Q-4 a) Determine the infinite continued fraction representation of $\sqrt{5}$.
b) If the integer a has order k modulo n, then prove that $a^{i} \equiv a^{j}(\bmod n)$ if and only if $i \equiv j(\bmod n)$.
c) Define: Euler phi-function. Also find $\phi(9)$.
d) The value of any infinite continue fraction is an irrational number. Determine whether the statement is true or false.

Q-5 a) Let $N=a_{0}+a_{1} 10+a_{2} 10^{2}+\cdots+a_{m} 10^{m}$ be the decimal expansion of the positive integer $N, 0 \leq a_{k}<10$, and let $S=a_{0}+a_{1}+\cdots+a_{m}$. Then prove that $9 \mid N$ if and only if $9 \mid S$. Is 1571724 divisible by 9 ? Justify.
b) Prove that the product of two primitive polynomial is primitive.
c) Find all integer solutions of the equation $56 x+72 y=40$.

OR
Q-5 a) Define: Infinite continued fractions. Find the unique irrational number represented by the infinite continued fraction $[1 ; 2, \overline{3,1}]$.
b) If $\frac{p_{k}}{q_{k}}$ arethe convergents of the continued fraction expansion of \sqrt{d} then,
prove that $p_{k}^{2}-d q_{k}^{2}=(-1)^{k+1} t_{k+1}$, where $t_{k+1}>0, k=0,1,2,3, \ldots$
c) Prove that for any integer $n>1, \phi(n)=n-1$ if and only if n is prime.

Q-6 a) Prove that all the solutions of $x^{2}+y^{2}=z^{2}$ with $x, y, z>0$; satisfying the conditions $(x, y, z)=1,2 \mid x$ are given by the formula
$x=2 s t, y=s^{2}-t^{2}, z=s^{2}+t^{2}$,wheres $>t>0,(s, t)=1$ and one of s, t is even and the other is odd.
b) Prove that the product of two primitive polynomial is primitive.
c) Compute the convergents of the simple continued fraction $[1 ; 2,3,3,2,1]$.

OR
Q-6 a) If $2^{k}-1$ is prime $(k>1)$, then prove that $n=2^{k-1}\left(2^{k}-1\right)$ is perfect and every even perfect number is of the form.
b) Prove that any rational number can be written as a finite simple continued fraction.
c) Prove that if an irreducible polynomial $p(x)$ divides a product $f(x) g(x)$, then $p(x)$ divides at least one of the polynomials $f(x)$ and $g(x)$.

